

Standards Considering **Student Pathways** through the **CCSSM**

The Common Core State

David Foster Silicon Valley Mathematics Initiative www.svmimac.org

Optimism

"Optimism is an essential ingredient for innovation. How else can the individual welcome change over security, adventure over staying in safe places? A significant innovation has effects that reach much further than can be imagined at the time, and creates its own uses. It will not be held back by those who lack the imagination to exploit its use, but will be swept along by the creative members of our society for the good of all. Innovation cannot be mandated any more than a baseball coach can demand that the next batter hit a home run. He can, however, assemble a good team, encourage his players, and play the odds." Robert N. Novce

Silicon Valley Mathematics Initiative

Approximately 100 Members - School Districts, Charter School Networks, and Schools

	,		Conta Ana UCD
Albany USD	Dioceses of Santa Clara	Morgan Hill USD	Santa Ana USD
Alvord SD (Riverside County)	Dublin USD	Mountain SD	Santa Clara USD
Antioch Unified SD	East Side UHSD	Mountain View SD	Santa Cruz CSD
Aspire Charter School Network	Edmonds Community College	National Council of La Raza	Saint Michael's
Assumption School	Emery SD	New York City PS	School (Poway)
Atlanta PS	Etiwanda SD	New Visions for Public	Saint Patrick's
Bayshore SD	Evergreen SD	Schools	School (San Jose)
Belmont-Redwood Shores SD	Gilroy USD	Oakland Unified SD	Saratoga
Berryessa SD	Fairfield-Suisun USD	Pacific Grove HS	Scotts Valley USD
Bolinas – Lagunitas SD	Franklin-McKinley SD	Oak Grove SD	Santa Clara COE
Brisbane SD	Fremont Union HSD	Pacifica SD	Sequoia HSD
Buckeye SD	Fremont USD	Pajaro Valley USD	SMCOE County
Cambrian SD	Forsyth County School (GA)	Palo Alto USD	Court Schools
Campbell Union HSD	Half Moon Bay	Pittsburgh USD	South Cook Service District
Campbell Union ESD	Hamilton County (Tn)	Portola Valley SD	South San Francisco
Castro Valley USD	Hayward USD	Ravenswood City SD	USD
Carmel HS	Jefferson ESD	Riverside COE	Sumter County (GA)
Charter Oak USD	Jefferson HSD	Redwood City Schools	Tehama COE
Charter School of Morgan Hill	Las Lomitas SD	Sacramento City USD	The Nueva School
Chicago Public School	La Honda-Pescadero Sd	Salinas City Schools	Union SD
Creative Arts Charter (SF)	Live Oak School Districts	San Bruno Park	University of Illinois,
Cristo Rey Network	Livermore USD	San Carlos CLC	Chicago
CSU San Bernardino	Los Altos SD	San Diego COE	Valley Christen
Cotati – Rohnert Park	Los Gatos SD	San Francisco USD	(Dublin)
Cupertino SD	Menlo Park SD	SMFC (Park School)	Valdosta City (GA)
Dade County Schools (GA)	Monterey Peninsula USD	San Jose Unified SD	Walnut Creek SD
Del Mar USD (San Diego Co)	Moreland SD	San Mateo UHSD	Woodside SD
Discovery Charter School	Moraga SD	San Ramon Valley USD	

Common Core Standards: *A New Direction linking Instruction and Assessment*

Three Central Authors Common Core State Standards in Mathematics

Bill McCallum

Phil Daro

Jason Zimba

Charges given to the authors:

- All students College and Career Ready by 11th grade
- Internationally Benchmarked
- Make the standards "Fewer, Clear and Higher"

CCSS Mathematical Practices

HABITS OF MIND CHING **'ERAR(**

problems and persevere in precision Make sense of Attend to

REASONING AND EXPLAINING

- 2. Reason abstractly and quantitatively
- 3. Construct viable arguments and critique the reasoning of others

MODELING AND USING TOOLS

- 4. Model with mathematics
- 5. Use appropriate tools strategically

SEEING STRUCTURE AND GENERALIZING

- 7. Look for and make use of structure
- 8. Look for and express regularity in repeated reasoning

Levels of Thinking in bloom's taxonomy and webb's Depth of Knowledge

Depth of Knowledge (DOK) Low-Cognitive Demand

Level 1: Recalling and Recognizing

Student is able to recall routine facts of knowledge and can recognize shape, symbols, attributes and other qualities.

Level 2: Using Procedures

Student uses or applies procedures and techniques to arrive at solutions or answers.

Depth of Knowledge (DOK) High-Cognitive Demand

Level 3: Explaining and Concluding

Student reasons and derives conclusions. Student explains reasoning and processes. Student communicates procedures and findings.

Level 4: Making Connections, Extending and Justifying

Student makes connections between different concepts and strands of mathematics. Extends and builds on knowledge to a situation to arrive at a conclusion. Students use reason and logic to prove and justify conclusions.

Common Core Big Ideas Depth of Knowledge (DOKs)

	Mathematics		ELA/Literacy	
	DOK3	DOK4	DOK3	DOK4
Current Assessments	<2%	0%	20%	2%
New SBAC Assessments	49%	21%	43%	25%

Goals of Assessment

"We must ensure that tests measure what is of value, not just what is easy to test. If we want students to investigate, explore, and discover, assessment must not measure just mimicry mathematics."

Everybody Counts

CST – Released Items Algebra 1

The total cost (c) in dollars of renting a sailboat for n days is given by the equation

c = 120 + 60n.

If the total cost was \$360, for how many days was the sailboat rented?

- A 2
- **B** 4
- **C** 6
- **D** 8

SMARTER BALANCE Assessment Consortia

MARS Team Mathematics Assessment Resource Service

Developed Content Specifications for SBAC

Content Specifications for the Summative assessment of the Common Core State Standards for Mathematics

DRAFT TO ACCOMPANY GOVERNING STATE VOTE ON ASSESSMENT CLAIMS

March 20, 2012

Developed with input from content experts and Smarter Balanced Assessment Consortium Staff, Work Group Members, and Technical Advisory Committee

Acknowledgements

Alan Schoenfeld, University of California at Berkeley and Hugh Burkhardt, Shell Centre, University of Nottingham served as principal authors of this paper. Sections of the document were also authored by Jamal Abedi, University of California at Davis; Karin Hess, National Center for the Improvement of Educational Assessment; Martha Thurlow, National Center on Educational Outcomes, University of Minnesota

Significant contributions and organization of this second draft were provided by **Shelbi Cole**, Connecticut State Department of Education, and **Jason Zimba**, Student Achievement Partners. The project was facilitated by **Linda Darling-Hammond** at Stanford University.

Others who offered advice and feedback on the document include:
Rita Crust, Lead Designer, Mathematics Assessment Resource Service Past President, Association of State Supervisors of Mathematics
Brad Findell, Former Mathematics Initiatives Administrator, Ohio Department of Education
David Foster, Director, Silicon Valley Mathematics Initiative
Henry Pollak, Adjunct Professor, Columbia University, Teachers College, Former Head of Mathematics and Statistics, Bell Laboratories
W. James Popham, Emeritus Professor, University of California, Los Angeles
Cathy Seeley, Senior Fellow, Charles A. Dana Center, The University of Texas at Austin
Malcolm Swan, Professor of Mathematics Education, Centre for Research in Mathematic Education, University of Nottingham

Claims

Smarter Balanced

- Concepts and Procedures: Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency.
- Problem Solving: Students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
- Communicating Reasoning: Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.
- Modeling and Data Analysis: Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

Performance Assessments

To Inform Instruction And Measure Higher Level Thinking

This problem gives you the chance to: • choose and perform number operations in a practical context				
The baker uses boxes of different sizes to	carry her goods. Cookie boxes hold 12 cookies. Donut boxes hold 4 donuts. Muffin boxes hold 2 muffins. Bagel boxes hold 6 bagels.			
 On Monday she baked 24 of everything 	g.			
How many boxes did she need? Fill in	the empty spaces.			
cookie boxes	donut boxes			
muffin boxes	bagel boxes			
2. On Tuesday she baked just bagels. She	e filled 7 boxes.			
How many bagels did she make?				
Show your calculations.				
 On Wednesday she baked 42 cookies. How many boxes did she fill? How many cookies were left over? Explain how you figured this out. 				
On Thursday she baked 32 of just one i What did she bake on Thursday? Show how you figured this out.				
onow how you ngured this out.				
Depylight © 2007 by Mathematics Assessment Pag	e 2 The Baker Test			

Core Mathematics - (meeting standards) Top of Ramp (conceptually deeper, beyond)

- The Mathematics Assessment Resource Service (MARS) is an NSF funded collaboration between U.C. Berkeley and the Shell Centre in Nottingham England.
- The Assessments target grades 2- Geometry and are aligned with the State and NCTM National Math Standards.

CR 4: Baseball Jerseys

Bill is going to order new jerseys for his baseball team.

The jerseys will have the team logo printed on the front.

Bill asks 2 local companies to give him a price.

1. 'Print It' will charge \$21.50 each for the jerseys.

Using n for the number of jerseys ordered and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Print It'.

2. 'Top Print' has a Set-Up cost of \$70 and then charges \$18 for each jersey.

Using n to stand for the number of jerseys ordered and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Top Print'.

3. Use the two equations from questions 1 and 2 to figure out how many jerseys Bill would need to order for the price from 'Top Print' to be less than from 'Print It'. Explain how you figured it out.

4. Bill decides to order 30 jerseys from 'Top Print'. How much more would the jerseys have cost if he had bought them from 'Print It'? Show all your calculations.

Apprentice Task

Baseball Jerseys

This problem gives you the chance to:

work with equations that represent real life situations

Bill is going to order new jerseys for his baseball team.

The jerseys will have the team logo printed on the front.

Bill asks two local companies to give him a price.

1. 'Print It' will charge \$21.50 each for the jerseys.

Using n for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Print It'.

2. 'Top Print' has a one-time setting up cost of \$70 and then charges \$18 for each jersey.

Using n to stand for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Top Print'.

 Bill decides to order 30 jerseys from 'Top Print'. How much more would the jerseys cost if he buys them from 'Print It'? Show all your calculations.

4. Use the two equations from questions 1 and 2 to figure out how many jerseys Bill would need to buy for the price from 'Top Print' to be less than from 'Print It'. Explain how you figured it out.

Performance Exams 40,000 - 70,000

students per year since 1999

Students in grades 2 through 10th/11th grade are administered performance exams (5 apprentice tasks per exam).

District scoring leaders are trained in using task specific rubrics

Student tests are hand scored by classroom teachers trained and calibrated using standard protocols.

Educational Data Systems

Student results are collected, analyzed, and reported by an independent data contractor.

Random sample of student papers are audited and rescored by SJSU math & CS students. (Two reader correlation >0.95)

MAC vs. CST 2012

Silicon Valley Mathematics Initiative Mathematics Assessment Collaborative Performance Assessment Exam 2012

What can MARS tests tell us?

	Below standards on MARS test	Meeting/exceeding on MARS test
Below standards on NCLB test	Accurately identified as struggling	
Meeting/exce eding on NCLB test		Accurately identified as understanding

What can MARS tests tell us?

	Below standards on MARS test	Meeting/exceeding on MARS test
Below	Accurately	Misidentified as
standards on	identified as	struggling
NCLB test	struggling	("hidden gems")
Meeting/exce	Misidentified as	Accurately
eding on NCLB	understanding	identified as
test	("false positives")	understanding

MAC vs. CST 2012

Silicon Valley Mathematics Initiative Mathematics Assessment Collaborative Performance Assessment Exam 2012

MAC vs CST 2012

2nd Grade	MAC Level 1	MAC Level 2	MAC Level 3	MAC Level 4
Far Below Basic	1.0%	0.3%	0.1%	0.0%
Below Basic	1.9%	2.4%	1.2%	0.0%
Basic	1.3%	4.8%	5.5%	0.3%
Proficient	0.4%	3.5%	17.7%	3.4%
Advanced	0.3%	0.9%	23.4%	31.4%

2nd Grade	MAC Below	MAC At/Above	Total
CST Below	11.7%	7.1%	18.8%
CST At/Above	5.1%	75.9%	81.0%
Total	16.8%	83.0%	100%

Elementary Grades

3rd Grade	MAC Below	MAC At/Above	Total
CST Below	15.9%	5.2%	21.1%
CST At/Above	13.7%	65.4%	79.1%
Total	29.6%	70.6%	100%

4th Grade	MAC Below	MAC At/Above	Total
CST Below	16.9%	2.8%	19.7%
CST At/Above	20.3%	60.0%	80.3%
Total	37.2%	62.8%	100%

5th Grade	MAC Below	MAC At/Above	Total
CST Below	20.6%	3.8%	24.4%
CST At/Above	18.7%	56.9%	75.6%
Total	39.3%	60.7%	100%

Middle School

6th Grade	MAC Below	MAC At/Above	Total
CST Below	37.2%	1.4%	38.6%
CST At/Above	25.1%	36.5%	61.6%
Total	62.3%	37.9%	100%

7th Grade	MAC Below	MAC At/Above	Total
CST Below	33.3%	2.1%	35.4%
CST At/Above	27.4%	37.1%	64.5%
Total	60.7%	39.2%	100%

Course 1	MAC Below	MAC At/Above	Total
CST Below	34.5%	3.6%	38.1%
CST At/Above	30.3%	31.5%	61.8%
Total	64.8%	35.1%	100%

8th Graders Taking HS Geometry

Course 2	MAC Below	MAC At/Above	Total	
CST Below	3.1%	0.8%	3.9%	
CST At/Above	51.3%	44.8%	96.1%	
Total	54.4%	45.6%	100%	

Domains K-8

Counting & Cardinality						Ratios & Pro Relation	1	
Operations and Algebraic Thinking				The Number System				
Number and Operations in Base Ten				Expressions and Equations				
		Fractions						Functions
Measurement and Data								
Geometry				Geometry				
						Statistics and Probability		
K	1	2	3	4	5	6	7	8

Mathematics Standards for High School

Arranged by conceptual cluster (<u>NOT by course</u>):

- Number and Quantity
- Algebra

- Modeling
- Geometry

• Functions

• Statistics & Probability

Two Mathematics Pathways

Two Regular Sequences:

Traditional Pathway

 2 Algebra courses,1 Geometry course, with Probability and Statistics interwoven Courses in higher level mathematics: Precalculus, Calculus*, Advanced Statistics, Discrete Mathematics, Advanced Quantitative Reasoning, or courses designed for career technical programs of study.

International Pathway

 3 courses that attend to Algebra, Geometry, and Probability and Statistics each year

Credentialing

- Multiple Subject Credential with a Supplementary Authorization
 - Can only teach mathematics to students in grades 9 and below
 - Can teach any mathematics content
- Single Subject Teaching Credential with a Math Supplementary
 - Can teach mathematics to students in grades K-12
 - Mathematics content is from grade 9 or below courses
- Subject Matter Authorization
 - Can teach mathematics to students in grades K-12
 - Mathematics content is from grade 9 or below courses

Credentialing (continued)

- Single Subject Teaching Credential-Foundational Level Mathematics
 - Can teach
 - General mathematics
 - All levels of Geometry
 - Probability and Statistics
 - Consumer Mathematics
 - Cannot teach
 - Trigonometry (unless it's being introduced in one of the above listed courses)
 - Calculus
 - Math Analysis
 - Can be taught to students in grades K-12

Credentialing (continued)

- Single Subject Teaching- Mathematics
 - Can teach mathematics to students in grades K-12
 - Can teach the following mathematics courses:
 - General mathematics
 - All levels of Geometry
 - Probability and Statistics
 - Consumer Mathematics
 - Trigonometry
 - Pre-Calculus
 - Math Analysis
 - Calculus

A-G Requirements

Board of Admissions and Relations with Schools (BOARS) Statement on High School Mathematics Curriculum Development under the Common Core State Standards

April 2013

Consistent with past policy and practice for course approval, BOARS reiterates its full support for either the integrated pathways or the traditional pathways, as stated in the <u>A-G Guide's section on Mathematics ("c")</u>. It is BOARS' expectation that courses developed in accordance with either sequence will receive subject area "c" approval provided that they satisfy the course requirements for area "c" presented in the A-G Guide and that they support students in achieving the Standards of Mathematical Practice given in the CCSSM:

http://senate.universityofcalifornia.edu/committees/boars/BOARSonCCSSMathCourseDevelopment.pdf

Algebra Forever vs CCSSM

Arnold Schwarzenegger July 8, 2008

"We have made significant gains in enrolling students in Algebra I in eighth grade in recent years, surpassing other state in the U.S. But we must set our goal higher." We have also made more significant gains in FAILING students in Algebra I in eighth grade in recent years, surpassing other state in the U.S.

3 out of 4 failed in 2008

California Adopted the CCSSM on August 2, 2010 with an addition 15% of a traditional Algebra 1 course and other added standards. We selected PARCC as the assessment to complete the Race to the Top application that we never won.

NEWS RELEASE

California Adopts Modified Math Standards to Restore Local Decision Making

Required by Legislation, Move Allows Progress Toward Common Core

The move rescinds action by the prior Board in 2010, which adopted standards that contained a unique Grade 8 Algebra I course inconsistent with the published *Common Core State Standards for Mathematics*.

Torlakson recommended the unique Grade 8 Algebra I course be replaced with Algebra I and Mathematics I courses based upon the *Common Core State Standards for Mathematics*.

Date: Wed, 16 Jan 2013

The California Algebra Experiment

- In 2012, 59% of all eighth grade students took the CST Algebra 1 exam and more than half were not successful. Even more will repeat the class again in high school.
- In 9th grade, 49% of the students took CST Algebra 1 exam and 75% of those students did not pass.
- Research studies indicate nearly 65% of the students who were placed in Algebra in eighth grade are placed in the same level of Algebra in ninth grade.
- About 46% of the students who were successful in Algebra in the eighth grade (B- grade and Proficient) and who were placed again in Algebra in ninth grade were less successful in their second experience.

It is not Algebra for All, it is Algebra Forever.

New K-12 Math Curriculum Inspired by The Common Core State Standards

BILL& MELINDA GATES foundation

The Gates Foundation and the Pearson Foundation are funding a large scale project to create a system of courses to support the ELA and Mathematics CCSS. These will be a modular, electronic curriculum spanning all grade levels. A Santa Cruz based company, Learning In Motion, is working to write the lessons.

EARNING IN MOTION

Learning in Motion is composed of creative and innovative individuals with extensive background in education, technology, publishing, marketing, and design.

Services Our expertise is education. Explore the projects we have done for universities, non-profits, corporations, and schools.

Think in Terms of Units

Phil Daro has suggested that it is not the lesson or activity, but rather the **unit** that is the "optimal grain-size for the learning of mathematics". Hence that was the starting point for our Scope and Sequence.

Developers of High School: Patrick Callahan, Dick Stanley, David Foster, Brad Findell, Phil Daro, and Marge Cappo

Middle School Curriculum

CCSS High School Units

High School Algebra Units:

A0 Introductory Unit A1 Modeling with Functions A2 Linear Functions A3 Linear Equations and Ineq in One Var A4 Linear Equations and Ineq in Two Var A5 Quadratic Functions A6 Quadratic Equations A7 Exponential Functions A8 Trigonometric Functions A9 Functions A10 Rational and Polynomial Expressions

High School Geometry Units:

G0 Introduction and Construction
G1 Basic Definitions and Rigid Motions
G2 Geometric Relationships and Properties
G3 Similarity
G4 Coordinate Geometry
G5 Circle and Conics
G6 Trigonometric Ratios
G7 Geometric Measurement and Dimension

M4 Capstone Geometric Modeling Project

High School Prob & Stat Units:

P1 Probability S1 Statistics S2 Statistics (Random Process)

HO Intro Unit Sdays G-GPE G-GPE G-GPE	Ays 20 days	A6 Quadratic Equations 26 days N-CN 7 A-SSE 3a A-SSE 3b A-REI 4 A-REI 4a,b A-REI 4a,b	4 days Modeling Unit	P3 5 days	G3 Similarity 20 days G-SRT 1 G-SRT 2 G-SRT 3 G-SRT 4 G-SRT 5	G5 Circles and 20 days G-C 1 G-C 2 G-C 5 G-GPE 1 G-GPE 2	P1 Probability 28 days S-CP 1 S-CP 2 S-CP 3 S-CP 4 S-CP 5 S-CP 6	M4 Capstone Geometric Modeling Project 10 days G-MG 1* G-MG 1* G-MG 3*	P4 5 days
	F-IF 8 F-IF 8a F-IF 9 F-BF 1 F-BF 1a, b F-BF 3	A-REI 7					S-CP 6 S-CP 7		

Grade 11

I-0 Intro Unit 5 days	G7 Geometric Measurement & Dimension I5 days G-GMD 1 G-GMD 3 G-GMD 4	A7 Exponential Punctions 25 days N-RN 1 N-RN 2 A-SSE 3C A-SSE 4* A-REI 11 F-IF 3 F-IF 7e F-IF 8b F-BF 2 F-IF 7e F-IF 8b F-BF 4a F-LE 1 F-LE 1 F-LE 1 F-LE 2 F-LE 3 F-LE 4 F-LE 5	G6 Trigonometric 15 days G-SRT 6 G-SRT 7 G-SRT 8	8 days Modeling Unit	P5 5 days נעסן ובע אוסק	A8 Trigonometric IS days F-IF 7e F-TF 1 F-TF 2 F-TF 5 F-TF 8	A9 Functions 15 days N-RN 1 N-RN 2 A-SSE 1 A-SSE 1 A-SSE 1b A-SSE 1b A-SSE 1b A-REI 11 F-IF 4 F-IF 7b F-IF 7c F-BF 1 F-BF 1a, b F-BF 3 F-LE 3	A10 Rational and Polynomial Expressions 20 days N-RN 3 N-CN 1 N-CN 2 N-CN 7 A-SSE 1 A-SSE 1 A-SSE 1 A-SSE 1 A-SSE 2 A-APR 1 A-APR 2 A-APR 1 A-APR 2 A-APR 4 A-APR 4 A-APR 6 A-REI 2 A-REI 11	S2 Statistics (Random Processes) 26 days S-IC 1 S-IC 2 S-IC 2 S-IC 3 S-IC 4 S-IC 5 S-IC 6 S-ID 4	4 days Modeling Unit	P6 5 days Broject
--------------------------------	---	--	---	----------------------------	----------------------------------	---	--	--	---	----------------------------	-------------------------

Curriculum and Implementation Effects on High School Students' Mathematics Learning From Curricula Representing Subject-Specific and Integrated Content Organizations

> Douglas A. Grouws, James E. Tarr, Óscar Chávez, Ruthmae Sears, Victor M. Soria, and Rukiye D. Taylan University of Missouri

This study examined the effect of 2 types of mathematics content organization on high school students' mathematics learning while taking account of curriculum implementation and student prior achievement. The study involved 2,161 students in 10 schools in 5 states. Within each school, approximately 1/2 of the students studied from an integrated curriculum (Course 1) and 1/2 studied from a subject-specific curriculum (Algebra 1). Hierarchical linear modeling with 3 levels showed that students who studied from the integrated curriculum were significantly advantaged over students who studied from a subject-specific curriculum on 3 end-of-year outcome measures: Test of Common Objectives, Problem Solving and Reasoning Test, and a standardized achievement test. Opportunity to learn and teaching experience were significant moderating factors.

Jason Zimba co-Author CCSSM It is **incorrect** to say that algebra isn't covered until high school. There is a great deal of algebra in the 8th grade standards.

For example, students in grade 8 are expected to solve two simultaneous equations with two unknowns. I don't see a lack of rigor there. The standards actually invest heavily in algebra because of the way they focus so strongly on the prerequisites for algebra in the elementary grades.

CCSSM 8th Grade are HS Standards

Algebra/Functio ns 67%

Geometry

(Transformations and Triangle Proofs) 20%

- Bivariate Data 10%
- Cross-Concept Project 3%

When do we Accelerate????

Where to Accelerate?

- Can we live without understanding....
- Integer and their operations
- **Division of Fractions**
- Ratio and proportional reasoning
- Expression, Equations^{*} and Inequalities

Where to Accelerate?

Can we live without understanding....

Properties of rational numbers, percents, discounts, markups, etc.

Rate and problems solving using rate

Similarity, proportional reasoning

Algebraic Modeling with Equations

Probability

Geometry: Angles, Volume, Surface Area, 3-D shapes

7TH GRADE

When do we Accelerate????

How will kids who are ready for advanced work accelerate to reach courses like calculus during high school?

Those are questions for policy, not for standards. The standards don't speak to this issue. Decisions about acceleration and ability grouping are still the purview of local districts,

just as they've always been.

Jason Zimba co-Author CCSSM

Appendix A

COMMON CORE STATE STANDARDS FOR

Mathematics

Appendix A:

Designing High School Mathematics Courses Based on the Common Core State Standards

Brad Findell

Accelerated Seventh Grade by Appendix A

Properties of rational numbers, percents, discounts, markups, etc.

Rate and problems solving using rate

Similarity, proportional reasoning

Algebraic Modeling with Equations

Probability

Geometry: Angles, Volume, Surface Area, 3-D shapes

In Addition you have nearly all of the 8th grade CCSSM course in 7th (accept for 3 standard sets)

Algebra/Functions (through Systems of Equations)

Geometry (Congruence and Similairty Triangle Proofs) Statistical Inferences

When do they Accelerate in Japan?

After 8th Grade!!!!!!!

Where to Accelerate????

When do we Accelerate????

The Only Reasonable Answer for Learning: 9th Grade!!!!

Finite Math

Accelerated Sequence

6 th Grade	7 th Grade	8 th Grade	Math 2 International	Math 3 International	HS Year 4 Pre-Calculus Math Analysis	AP Calculus
-----------------------	-----------------------	-----------------------	-------------------------	-------------------------	---	----------------

California Mathematics Framework: Possible Pathways to Calculus in 12th Grade

For clarity, "HS Course 1, 2 or 3" could refer to either the "traditional" high school pathway (Algebra 1, Geometry, Algebra 2) or "integrated" (Math 1, Math 2, Math 3).

1. Compacting in Middle School: Three CCSS courses in two years during grades 7 and 8 Decision point to accelerate: after grade 6

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students
CCSS 6	CCSS 7 <u>and</u> CCSS 8, part 1	CCSS 8, part 2 <u>and</u> CCSS HS Course 1	CCSS HS Course 2	CCSS HS Course 3	CCSS HS Course 4	AP Calculus

2. Doubling Up in High School: Two CCSS courses during two class periods of math in grade 9 Decision point to accelerate: after grade 8

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students	
CCSS 6	CCSS 7	CCSS 8	1 st semester:	CCSS HS Course 3	CCSS HS Course 4	AP Calculus	
			CCSS HS Course 1				
			2 nd semester:				
			CCSS HS Course 2				

3. Compacting in High School: Three CCSS courses in two years during grades 9 and 10 Decision point to accelerate: after grade 8

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students
CCSS 6	CCSS 7	CCSS 8	CCSS HS Course 1 <u>and</u> CCSS HS Course 2A	CCSS HS Course 2B <u>and</u> CCSS HS Course 3	CCSS HS Course 4	AP Calculus

4. Enhanced Pathway in High School: STEM High School Courses 1, 2, and 3 will include the advanced CCSS (+) pre-calculus standards

Decision point to accelerate: after grade 8 (STEM – Science, Technology, Engineering, and Mathematics)

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students
CCSS 6	CCSS 7	CCSS 8	Enhanced (STEM) CCSS HS Course 1	Enhanced (STEM) CCSS HS Course 2		AP Calculus

5. Pre-Calculus Summer Bridge Pathway: After completing Courses 1, 2 and 3, students can take a summer course in preparation for Calculus Decision point to accelerate: after grade 11

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students G		Grade 12 students	
CCSS 6	CCSS 7	CCSS 8	CCSS HS Course 1	CCSS HS Course 2	CCSS HS Course	3 AF	P Calculus	
	Sumi					Summer		

Pre-Calculus

Discussion Questions to Consider

- How are the current math pathways enabling your students to be college and career ready? What opportunities and challenges do students face?
- What are the merits and demerits of the *traditional* US high school pathway versus an *international* pathway?
- What data should we consider in evaluating our current system? What do we already have available and what would need to be researched or tracked?
- What would it take to really change your current pathway system?
 - What are political implications?
 - What articulation would be required in your vertical feeder system?
 - Who would need to be educated and how?
 - How would current students be phased into a new pathway system?
 - What would it take for your institution to be successful in this change process?