The Common Core State Standards

Considering Student Pathways through the CCSSM

David Foster
Silicon Valley Mathematics Initiative www.svmimac.org

Optimism

"Optimism is an essential ingredient for innovation. How else can the individual welcome change over security, adventure over staying in safe places? A significant innovation has effects that reach much further than can be imagined at the time, and creates its own uses. It will not be held back by those who lack the imagination to exploit its use, but will be swept along by the creative members of our society for the good of all. Innovation cannot be mandated any more than a baseball coach can demand that the next batter hit a home run. He can, however, assemble a good team, encourage his players, and play the odds."
Robert N. Noyce

Silicon Valley Mathematics Initiative

Approximately 100 Members - School Districts,	Charter School Networks, and Schools	
Albany USD	Dioceses of Santa Clara	Morgan Hill USD

Common Core Standards: A New Direction linking Instruction and Assessment

Three Central Authors

Common Core State Standards in Mathematics

Bill McCallum

Phil Daro

Jason Zimba

Charges given to the authors:

- All students College and Career Ready by $11^{\text {th }}$ grade
- Internationally Benchmarked
- Make the standards "Fewer, Clear and Higher"

CCSS Mathematical Practices

OVERARCHING HABITS OF MIND

1. Make sense of problems and persevere in
solving them
2. Attend to precision

REASONING AND EXPLAINING

2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others

MODELING AND USING TOOLS

4. Model with mathematics
5. Use appropriate tools strategically

SEEING STRUCTURE AND GENERALIZING
 7. Look for and make use of structure
 8. Look for and express regularity in repeated reasoning

Bloom's six major categories were changed from noun to verb forms in the new version which was developed in the 1990's and released in 2001. The knowledge level was renamed as remembering. Comprehension was retitled understanding, and synthesis was renamed as creating. In addition, the top two levels of Bloom's changed position in the revised version.

Bloom's Taxonomy Revised Bloom's Taxonomy

$$
\text { Knowledge } \quad \text { Remembering }
$$

Recall appropriate information.
Comprehension Understanding
Grasp the meaning of material.

Application
 Applying

Use learned material in new and concrete situations.

Analysis

Analyzing

Break down material into component parts so that its organizational structure may be understood.

Synthesis

Put parts together to form a new whole.

Evaluation

Judge value of material for a given purpose.

Evaluating

Make judgments based on criteria and standards.
Creating (Previously Synthesis) Put elements together to form a coherent or functional whole; reorganizing elements into a new pattern or structure through qenerating, planning, or producing.

Norman L. Webb of Wisconsin Center for Educational Research generated DOK levels to aid in alignment analysis of curriculum, objectives, standards, and assessments.

Webb's Depth of Knowledge \& Corresponding Verbs

*Some verbs could be classified at different levels depending on application.
Recall and Reproduction Correlates to Bloom's 2 Lowest Levels
Recall a fact, information, or procedure.
arrange, calculate, define, draw, identify, list, label, illustrate, match, measure, memorize, quote, recognize, repeat, recall, recite, state, tabulate, use, tell who- what- when- wherewhy

Skill/Concept

Engages mental process beyond habitual response using information or conceptual knowledge. Requires two or more steps.
apply, categorize, determine cause and effect, classify, collect and display, compare, distinguish, estimate, graph, identify patterns, infer, interpret, make observations, modify organize, predict, relate, sketch, show, solve, summarize, use context clues

Strategic Thinking

Requires reasoning, developing plan or a sequence of steps, some complexity, more than one possible answer, higher level of thinking than previous 2 levels.
apprise, assess, cite evidence, critique, develop a logical argument, differentiate, draw conclusions, explain phenomena in terms of concepts, formulate, hypothesize, investigate revise, use concepts to solve non-routine problems

Extended Thinking Correlates to Bloom's 2 Highest Levels

Requires investigation, complex reasoning, planning, developing, and thinking-probably over an extended period of time. *Longer time period is not an applicable factor if work is simply repetitive and/or does not require higher-order thinking.
analyze, apply concepts, compose, connect, create, critique, defend, design, evaluate, iudge, propose, prove, support, synthesize

Depth of Knowledge (DOK) Low-Cognitive Demand

Level 1: Recalling and Recognizing

Student is able to recall routine facts of knowledge and can recognize shape, symbols, attributes and other qualities.

Level 2: Using Procedures

Student uses or applies procedures and tec hniques to a mive at solutions or answers.

Depth of Knowledge (DOK) High-Cognitive Demand
 Level 3: Explaining and Concluding

Student reasons and derives conclusions. Student explains reasoning and processes. Student communicates procedures and findings.

Level 4: Making Connections, Extending and J ustifying

Student makesconnections between different concepts and strands of mathematics. Extends a nd builds on knowledge to a situation to a rive at a conclusion. Students use reason and logic to prove and justify conclusions.

Common Core Big Ideas Depth of Knowledge (DOKs)

	Mathematics		ELA/Literacy	
	DOK3	DOK4	DOK3	DOK4
Current Assessments	$<2 \%$	0%	20%	2%
New SBAC Assessments	49%	21%	43%	25%

Goals of Assessment

"We must ensure that tests measure what is of value, not just what is easy to test. If we want students to investigate, explore, and discover, assessment must not measure just mimicry mathematics."

Everybody Counts

CST - Released Items Algebra 1

The total cost (c) in dollars of renting a sailboat for \boldsymbol{n} days is given by the equation

$$
c=120+60 n .
$$

If the total cost was $\$ 360$, for how many days was the sailboat rented?

A 2
B 4
C 6
D 8

SMARTER BALANCE Assessment Consortia

Mair

MARS Team
Methemotics fissessment Resource Service

Developed Content Specifications for SBAC

Content Specifications for the Summative assessment of the Common Core State Standards for Mathematics

DRAFT TO ACCOMPANY GOVERNING STATE VOTE ON ASSESSMENT CLAIMS

March 20, 2012

Developed with input from content experts and Smarter Balanced Assessment Consortium Staff, Work Group Members, and

Technical Advisory Committer

Acknowledgements

Alan Schoenfeld, University of California at Berkeley and Hugh Burkhardt, Shell Centre, University of Nottingham served as principal authors of this paper. Sections of the document were also authored by Jamal Abedi, University of California at Davis; Karin Hess, National Center for the Improvement of Educational Assessment; Martha Thurlow, National Center on Educational Outcomes, University of Minnesota

Significant contributions and organization of this second draft were provided by Shelbi Cole, Connecticut State Department of Education, and Jason Zimba, Student Achievement Partners. The project was facilitated by Linda Darling-Hammond at Stanford University.

Others who offered advice and feedback on the document include:
Rita Crust, Lead Designer, Mathematics Assessment Resource Service
Past President, Association of State Supervisors of Mathematics
Brad Findell, Former Mathematics Initiatives Administrator, Ohio Department of Education
David Foster, Director, Silicon Valley Mathematics Initiative
Henry Pollak, Adjunct Professor, Columbia University, Teachers College,
Former Head of Mathematics and Statistics, Bell Laboratories
W. James Popham, Emeritus Professor, University of California, Los Angeles

Cathy Seeley, Senior Fellow, Charles A. Dana Center, The University of Texas at Austin
Malcolm Swan, Professor of Mathematics Education, Centre for Research in Mathematic Education,
University of Nottingham

Claims

Smarter Balanced

1. Concepts and Procedures: Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency.
2. Problem Solving: Students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
3. Communicating Reasoning: Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.
4. Modeling and Data Analysis: Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

Performance Assessments

To Inform Instruction And Measure Higher Level Thinking

- The Mathematics Assessment Resource Service (MARS) is an NSF funded collaboration between U.C. Berkeley and the Shell Centre in Nottingham England.
- The Assessments target grades 2- Geometry and are aligned with the State and NCTM National Math Standards.

SHELL CENTRE

BALANCED

 ASSESSMENT
Apprentice Task

Bill is going to order new jerseys for his baseball team.
The jerseys will have the team logo printed on the front.
Bill asks 2 local companies to give him a price.

1. 'Print It' will charge $\$ 21.50$ each for the jerseys.

Using n for the number of jerseys ordered and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Print It^{\prime} '.
2. 'Top Print' has a Set-Up cost of $\$ 70$ and then charges $\$ 18$ for each jersey.

Using n to stand for the number of jerseys ordered and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Top Print'.
3. Use the two equations from questions 1 and 2 to figure out how many jerseys Bill would need to order for the price from 'Top Print' to be less than from 'Print It'.
Explain how you figured it out.
4. Bill decides to order 30 jerseys from 'Top Print'

How much more would the jerseys have cost if he had bought them from 'Print It'?
Show all your calculations.

Baseball Jerseys

This problem gives you the chance to:

- work with equations that represent real life situations

Bill is going to order new jerseys for his baseball team.
The jerseys will have the team logo printed on the front.
Bill asks two local companies to give him a price.

1. 'Print It' will charge $\$ 21.50$ each for the jerseys.

Using n for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Print It'.
2. 'Top Print' has a one-time setting up cost of $\$ 70$ and then charges $\$ 18$ for each jersey.

Using n to stand for the number of jerseys ordered, and c for the total cost in dollars, write an equation to show the total cost of jerseys from 'Top Print'.
3. Bill decides to order 30 jerseys from 'Top Print'.

How much more would the jerseys cost if he buys them from 'Print It'?
Show all your calculations.
4. Use the two equations from questions 1 and 2 to figure out how many jerseys Bill would need to buy for the price from 'Top Print' to be less than from 'Print It'.
Explain how you figured it out.

Performance

Exams

40,000-70,000 students per year since 1999

Students in grades 2 through $10^{\text {th }} / 11^{\text {th }}$ grade are administered performance exams (5 apprentice tasks per exam).

Random sample of student papers are audited and rescored by SJSU math \& CS students. (Two reader correlation >0.95)

District scoring leaders are trained in using task specific rubrics

Student tests are hand scored by classroom teachers trained and calibrated using standard protocols.

MAC vs. CST 2012

Silicon Valley Mathematics Initiative Mathematics Assessment Collaborative Performance Assessment Exam 2012

What can MARS tests tell us?

	Below standars on Mast eest	Meetingexexeeding on Mast est
$\begin{gathered} \text { Below } \\ \text { standards on } \\ \text { NCLB test } \end{gathered}$	Accurately identified as struggling	
$\begin{gathered} \text { Meeting/exce } \\ \text { eding on NCLB } \\ \text { test } \end{gathered}$		Accurately identified as understanding

What can MARS tests tell us?

| | Below standards on MARs sest |
| :---: | :---: | :---: | Metingexexeeding on MARs sest

MAC vs. CST 2012

Silicon Valley Mathematics Initiative Mathematics Assessment Collaborative Performance Assessment Exam 2012

MAC vs CST 2012

2nd Grade	MAC Level 1	MAC Level 2	MAC Level 3	MAC Level 4
Far Below Basic	1.0\%	0.3\%	0.1\%	0.0\%
Below Basic	1.9\%	2.4\%	1.2\%	0.0\%
Basic	1.3\%	4.8\%	5.5\%	0.3\%
Proficient	0.4\%	3.5\%	17.7\%	3.4\%
Advanced	0.3\%	0.9\%	23.4\%	31.4\%

2nd Grade	MAC Below	MAC At/ Above	Total
cST Below	11.7%	7.1%	18.8%
cst At/ Above	5.1%	75.9%	81.0%
Total	16.8%	83.0%	100%

Elementary Grades

3rd Grade	MAC Below	MAC At/ Above	Total
CST Below	15.9%	5.2%	21.1%
CST At/ Above	13.7%	65.4%	79.1%
Total	29.6%	70.6%	100%

4th Grade	MAC Below	MAC At/ Above	Total
CST Below	16.9%	2.8%	19.7%
CST At/ Above	20.3%	60.0%	80.3%
Total	37.2%	62.8%	100%

5th Grade	MAC Below	MAC At/ Above	Total
CST Below	20.6%	3.8%	24.4%
CST At/ Above	18.7%	56.9%	75.6%
Total	39.3%	60.7%	100%

Middle School

6th Grade	MAC Below	MAC At/ Above	Total
CST Below	37.2%	1.4%	38.6%
CST At/ Above	25.1%	36.5%	61.6%
Total	62.3%	37.9%	100%

7th Grade	MAC Below	MAC At/ Above	Total
CST Below	33.3%	2.1%	35.4%
CST At/ Above	27.4%	37.1%	64.5%
Total	60.7%	39.2%	100%

Course 1	MAC Below	MAC At/ Above	Total
CST Below	34.5%	3.6%	38.1%
CsT At/ Above	30.3%	31.5%	61.8%
Total	64.8%	35.1%	100%

$8^{\text {th }}$ Graders Taking HS Geometry

Course 2	MAC Below	MAC At/ Above	Total
CsT Below	3.1%	0.8%	3.9%
CsT At/ Above	51.3%	44.8%	96.1%
Total	54.4%	45.6%	100%

Domains K-8

Mathematics Standards for High School

Arranged by conceptual cluster (NOT by course):

- Number and Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics \& Probability

Two Mathematics Pathways

Two Regular Sequences:

Traditional Pathway

- 2 Algebra courses,1 Geometry

Courses in higher level mathematics: Precalculus, Calculus*, Advanced Statistics, Discrete Mathematics, Advanced Quantitative Reasoning, or courses designed for career technical programs of study. course, with Probability and Statistics interwoven

International Pathway

- 3 courses that attend to Algebra, Geometry, and Probability and Statistics each year

Credentialing

- Multiple Subject Credential with a Supplementary Authorization
- Can only teach mathematics to students in grades 9 and below
- Can teach any mathematics content
- Single Subject Teaching Credential with a Math Supplementary
- Can teach mathematics to students in grades K-12
- Mathematics content is from grade 9 or below courses
- Subject Matter Authorization
- Can teach mathematics to students in grades K-12
- Mathematics content is from grade 9 or below courses

Credentialing (continued)

- Single Subject Teaching Credential-Foundational Level Mathematics
- Can teach
- General mathematics
- All levels of Geometry
- Probability and Statistics
- Consumer Mathematics
- Cannot teach
- Trigonometry (unless it's being introduced in one of the above listed courses)
- Calculus
- Math Analysis
- Can be taught to students in grades K-12

Credentialing (continued)

- Single Subject Teaching- Mathematics
- Can teach mathematics to students in grades K-12
- Can teach the following mathematics courses:
- General mathematics
- All levels of Geometry
- Probability and Statistics
- Consumer Mathematics
- Trigonometry
- Pre-Calculus
- Math Analysis
- Calculus

A-G Requirements

Board of Admissions and Relations with Schools (BOARS)
Statement on High School Mathematics Curriculum Development under the Common Core State Standards

April 2013
Consistent with past policy and practice for course approval, BOARS reiterates its full support for either the integrated pathways or the traditional pathways, as stated in the A-G Guide's section on Mathematics ("c"). It is BOARS' expectation that courses developed in accordance with either sequence will receive subject area "c" approval provided that they satisfy the course requirements for area " "presented in the A-G Guide and that they support students in achieving the Standards of Mathematical Practice given in the CCSSM:

Algebra Forever vs CCSSM

Arnold Schwarzenegger
July 8, 2008
"We have made significant gains in enrolling students in Algebra I in eighth grade in recent years, surpassing other state in the U.S. But we must set our goal higher."

We have also made more significant gains in FAILING students in Algebra I in eighth grade in recent years, surpassing other state in the U.S.

3 out of 4 failed in 2008

California Adopted the CCSSM on
August 2, 2010 with an addition 15\% of a traditional
Algebra 1 course and other added standards. We selected PARCC as the assessment to complete the Race to the Top application that we never won.

California Adopts Modified Math Standards to Restore Local Decision Making

Required by Legislation, Move Allows Progress Toward Common Core

The move rescinds action by the prior Board in 2010, which adopted standards that contained a unique Grade 8 Algebra I course inconsistent with the published Common Core State Standards for Mathematics.

Torlakson recommended the unique Grade 8 Algebra I course be replaced with Algebra I and Mathematics I courses based upon the Common Core State Standards for Mathematics.

Date: Wed, 16 Jan 2013

The California Algebra Experiment

- In 2012, 59\% of all eighth grade students took the CST Algebra 1 exam and more than half were not successful. Even more will repeat the class again in high school.
- In $9^{\text {th }}$ grade, 49% of the students took CST Algebra 1 exam and 75% of those students did not pass.
- Research studies indicate nearly 65% of the students who were placed in Algebra in eighth grade are placed in the same level of Algebra in ninth grade.
- About 46% of the students who were successful in Algebra in the eighth grade (B - grade and Proficient) and who were placed again in Algebra in ninth grade were less successful in their second experience.

It is not Algebra for All, it is Algebra Forever.

New K-12 Math Curriculum Inspired by The Common Core State Standards

The Gates Foundation and the Pearson Foundation are funding a large scale project to create a system of courses to support the ELA and Mathematics CCSS. These will be a modular, electronic curriculum spanning all grade levels. A Santa Cruz based company, Learning

PEARSON FOUNDATION

 In Motion, is working to write the lessons.

Think in Terms of Units

Phil Daro has suggested that it is not the lesson or activity, but rather the unit that is the "optimal grain-size for the learning of mathematics". Hence that was the starting point for our Scope and Sequence.

Developers of High School:
Patrick Callahan, Dick Stanley, David Foster, Brad Findell, Phil Daro, and Marge Cappo

Middle School Curriculum

CCSS High School Units

High School Algebra Units:
AO Introductory Unit
A1 Modeling with Functions
A2 Linear Functions
A3 Linear Equations and Ineq in One Var
A4 Linear Equations and Ineq in Two Var
A5 Quadratic Functions
A6 Quadratic Equations
A7 Exponential Functions
A8 Trigonometric Functions
A9 Functions
A10 Rational and Polynomial Expressions

High School Geometry Units:
GO Introduction and Construction
G1 Basic Definitions and Rigid Motions
G2 Geometric Relationships and Properties
G3 Similarity
G4 Coordinate Geometry
G5 Circle and Conics
G6 Trigonometric Ratios
G7 Geometric Measurement and Dimension
M4 Capstone Geometric Modeling Project

High School Prob \& Stat Units:
P1 Probability
S1 Statistics
S2 Statistics (Random Process)

Curriculum and Implementation Effects on High School Students' Mathematics Learning From Curricula Representing Subject-Specific and Integrated Content Organizations

Douglas A. Grouws, James E. Tarr, Óscar Chávez, Ruthmae Sears, Victor M. Soria, and Rukiye D. Taylan University of Missouri

This study examined the effect of 2 types of mathematics content organization on high school students' mathematics learning while taking account of curriculum implementation and student prior achievement. The study involved 2,161 students in 10 schools in 5 states. Within each school, approximately $1 / 2$ of the students studied from an integrated curriculum (Course 1) and $1 / 2$ studied from a subject-specific curriculum (Algebra 1). Hierarchical linear modeling with 3 levels showed that students who studied from the integrated curriculum were significantly advantaged over students who studied from a subject-specific curriculum on 3 end-of-year outcome measures: Test of Common Objectives, Problem Solving and Reasoning Test, and a standardized achievement test. Opportunity to learn and teaching experience were significant moderating factors.

Jason Zimba co-Author CCSSM

It is incorrect to say that algebra isn't covered until high school. There is a great deal of algebra in the 8th grade standards.

For example, students in grade 8 are expected to solve two simultaneous equations with two unknowns. I don't see a lack of rigor there. The standards actually invest heavily in algebra because of the way they focus so strongly on the prerequisites for algebra in the elementary grades.

CCSSM $8^{\text {th }}$ Grade are HS Standards

When do we Accelerate?????

Where to

Accelerate?

Can we live without understanding....

Integer and their operations

Division of Fractions

Ratio and proportional reasoning

Expression, Equations and Inequalities

Statistics

Where to Accelerate?

Can we live without understanding....

Properties of rational numbers, percents, discounts, markups, etc. Rate and problems solving using rate

Similarity, proportional reasoning

Algebraic Modeling with Equations

Probability
Geometry: Angles, Volume,
Surface Area, 3-D shapes

When do we Accelerate?????

How will kids who are ready for advanced work accelerate to reach courses like calculus during high school?

Those are questions for policy, not for standards.

 The standards don't speak to this issue. Decisions about acceleration and ability grouping are still the purview of local districts, just as they've always been.

Appendix A

COMMON CORE STATE STANDARDS FOR
Mathematics
Appendix A:
Designing High School
Mathematics Courses
Based on the Common
Core State Standards

Brad Findell

Accelerated Seventh Grade by Appendix A Properties of rational numbers, percents, discounts, markups, etc.

Rate and problems solving using rate

Similarity, proportional reasoning

Algebraic Modeling with Equations

Geometry: Angles, Volume, Surface Area, 3-D shapes

In Addition you have nearly all of
 the $8^{\text {th }}$ grade CCSSM course in $7^{\text {th }}$ (accept for 3 standard sets)

Algebra/Functions (through Systems of Equations)
Geometry (Congruence and Similairty Triangle Proofs) Statistical Inferences

When do they Accelerate in Japan?

After $8^{\text {th }}$ Grade!!!!!!!

Where to Accelerate????

When do we Accelerate?????

The Only Reasonable Answer for Learning: 9th Grade!!!!

College Ready Sequence

Math 2
International

Math 3 International

HS Year 4
Pre-Calculus
Math
Analysis

AP Statistics
Finite Math

AP
Calculus

California Mathematics Framework: Possible Pathways to Calculus in $12^{\text {th }}$ Grade

For clarity, "HS Course 1, 2 or 3" could refer to either the "traditional" high school pathway (Algebra 1, Geometry, Algebra 2) or "integrated" (Math 1, Math 2, Math 3).

1. Compacting in Middle School: Three CCSS courses in two years during grades 7 and 8

Decision point to accelerate: after grade 6

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students
CCSS 6	CCSS 7 and CCSS 8, part 1	CCSS 8, part 2 and CCSS HS Course 1	CCSS HS Course 2	CCSS HS Course 3	CCSS HS Course 4	AP Calculus

2. Doubling Up in High School: Two CCSS courses during two class periods of math in grade 9

Decision point to accelerate: after grade 8

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade 10 students	Grade 11 students	Grade 12 students
CCSS 6	CCSS 7	CCSS 8	$1^{\text {st }}$ semester: CCSS HS Course 1	CCSS HS Course 3	CCSS HS Course 4	AP Calculus
			$2^{\text {nd }}$ semester: CCSS HS Course 2			

3. Compacting in High School: Three CCSS courses in two years during grades 9 and 10

Decision point to accelerate: after grade 8

Grade 6 students	Grade 7 students	Grade 8 students	Grade 9 students	Grade $\mathbf{1 0}$ students	Grade 11 students	Grade 12 students
$\operatorname{CCSS} 6$	$\operatorname{CCSS} 7$	$\operatorname{CCSS} 8$	CCSS HS Course 1 and CCSS HS Course 2A	CCSS HS Course 2B and CCSS HS Course 3	CCSS HS Course 4	AP Calculus

4. Enhanced Pathway in High School: STEM High School Courses 1, 2, and 3 will include the advanced CCSS (+) pre-calculus standards Decision point to accelerate: after grade 8 (STEM - Science, Technology, Engineering, and Mathematics)

Grade $\mathbf{6}$ students	Grade $\mathbf{7}$ students	Grade 8 students	Grade 9 students	Grade $\mathbf{1 0}$ students	Grade $\mathbf{1 1}$ students	Grade 12 students
CCSS 6	CCSS 7	CCSS 8	Enhanced (STEM) CCSS HS Course 1	Enhanced (STEM) CCSS HS Course 2	Enhanced (STEM) CCSS HS Course 3	AP Calculus

5. Pre-Calculus Summer Bridge Pathway: After completing Courses 1, 2 and 3, students can take a summer course in preparation for Calculus Decision point to accelerate: after grade 11

| Grade $\mathbf{6}$ students | Grade 7 students | Grade 8 students | Grade 9 students | Grade $\mathbf{1 0}$ students | Grade 11 students | Grade 12 students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCSS 6 | CCSS 7 | CCSS 8 | CCSS HS Course 1 | CCSS HS Course 2 | CCSS HS Course 3 | AP Calculus |

Discussion Questions to Consider

- How are the current math pathways enabling your students to be college and career ready? What opportunities and challenges do students face?
- What are the merits and demerits of the traditional US high school pathway versus an international pathway?
- What data should we consider in evaluating our current system? What do we already have available and what would need to be researched or tracked?
- What would it take to really change your current pathway system?
- What are political implications?
- What articulation would be required in your vertical feeder system?
- Who would need to be educated and how?
- How would current students be phased into a new pathway system?
- What would it take for your institution to be successful in this change process?

